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A growing number of studies have
found that people have a common-
sense theory of psychology – a cogni-
tive framework for making inferences
about the goals of others and their
preferences, competencies and motiva-
tions, experiences, and beliefs – that is
already at work in surprisingly sophisti-
cated ways from early childhood.

In toddlers and children, common-
sense psychology appears to be
guided by the assumption that agents
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Commonsense Psychology
Theories of decision-making have been at the heart of psychology since the inception of
the field, but only recently has the field turned to the study of how humans – especially the
youngest humans – think humans make decisions. When we watch someone make a choice,
we explain it in terms of their goals, preferences, personalities, and moral beliefs. This capacity –

our commonsense psychology – is the cognitive foundation of human society. It lets us
share what we have and know, with those from whom we expect the same in return, and it
guides how we evaluate those who deviate from our expectations.

The representations and inferential power underlying commonsense psychology trace back
to early childhood – before children begin kindergarten, and often even in infancy. Work on
how children reason about the goals [1–8], desires [9–11], beliefs [12–18], and pro-social
behavior [19–29] of other agents has advanced our understanding of what in our commonsense
psychology is at work in early infancy [30–32] and what develops later [16,17,33–35]. None-
theless, major theoretical questions remain unresolved. What computations underlie our
commonsense psychology, and to what extent are they specific to the social domain? Are
there a small number of general principles by which humans reason about and evaluate
other agents, or do we instead learn a large number of special-case rules and heuristics?
To what extent is there continuity between the computations supporting commonsense
psychology in infancy and later ages? Is children's social-cognitive development a progressive
refinement of a computational system in place from birth, or are there fundamentally new
computational principles coming into play?
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Figure 1. The Logic of Costs and Rewards Underlying Commonsense Psychology. (A) If the blue agent wearing glasses (the protagonist) chooses the orange
over the apple, how confident are you that she prefers oranges in general to apples? (B) If the orange were high on the top shelf and the agent climbs up to get it, would
you become more confident she prefers oranges in general? (C) What if she had chosen the apple instead? Does this indicate any strong preference for apples? (D) If the
protagonist wants the orange from the top shelf, whom should she ask for help? (E) If she is the tallest person in the room, is it still appropriate for her to ask for help? (F) If
both the red and green agent refuse to help, are they equally mean or is the red one meaner? (G) If the protagonist cannot see the shelf and says she is going to get the
orange, are you confident she won’t change her mind? (H) If both agents choose kiwanos over rambutans, but one says ‘yum’ and the other says ‘yuck’ after tasting it,
who is more likely to have never tasted the fruits before?.
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In this article we advance a hypothesis that offers answers to each of these questions, and
that provides a unifying framework in which to understand the diverse social-cognitive
capacities we see even in young children. We propose that human beings, from early infancy,
interpret the intentional actions of others through the lens of a naïve utility calculus: that is,
people assume that others choose actions to maximize utilities – the rewards they expect to
obtain relative to the costs they expect to incur. The ‘naïve utility calculus’ can be made
precise computationally and tested quantitatively (Box 1). Embedded in a Bayesian frame-
work for reasoning under uncertainty, and supplemented with other knowledge children have
about the physical and psychological world (e.g., knowledge about objects, forces, action,
perception, goals, desires, and beliefs), the naïve utility calculus supports a surprisingly wide
range of core social-cognitive inferences and it persists stably in some form through adult-
hood, guiding the development of social reasoning even as children's thinking about others
undergoes significant growth.

Figure 1 illustrates some of the basic social intuitions that go beyond goal attribution which the
naïve utility calculus aims to explain. These examples illustrate the role that costs and rewards
play in commonsense psychology, but they are not specific to agents choosing fruits on shelves;
they apply to a wide range of situations in which intentional agents of any type (child, adult,
animated ball) interact with each other and move toward, reach for, or manipulate objects. We
focus our discussion on behaviors where even young children can immediately grasp the costs
and rewards involved. The naïve utility calculus likely applies to more abstract situations as well,
but its application may be complex in ways we do not consider here (e.g., cases where cultural
norms are in play). Although we focus on intentional behavior (as opposed to habits, reflexes,
accidents, etc.), some of the most revealing choices are decisions not to act; our proposal aims
to account for these as well.

The ideas behind this naïve utility calculus have a long history, tracing back to philosophers such
as Adam Smith [36] and John Stuart Mill [37]. Its formulation as an intuitive theory was
anticipated in some form by pioneers in social cognition, Fritz Heider [38], Harold Kelley [39],
and Roger Brown [40], but with the development of new computational cognitive modeling tools
these ideas can be formulated and tested more precisely [41–46].

Crucially, the naïve utility calculus is not a scientific account of how people act; it is a scientific
account of people's intuitive theory of how people act. These two notions may diverge –

indeed, the mathematics of utility theory was originally proposed by early economists [47] but
fails to predict actual human behavior in many important economic contexts [48,49]. Never-
theless, this does not mean the naïve utility calculus is not in some sense a reasonable and
useful model of human behavior. In physics, our intuitive theory is oversimplified with respect
to how the physical world actually works [50], but it still helps us to navigate everyday life
because it tends to support accurate predictions on the spatial and temporal scales that
matter most to us [51]. Similarly, the naïve utility calculus does not require that agents actually
compute and maximize fine-grained expected utilities to be a useful guide in many everyday
social situations.

In the remainder of this article we first describe the crucial ideas of the naïve utility calculus in their
simplest and most ideal form. Next we move on to more nuanced features of the intuitive theory
necessary to apply it to real-world decision-making. We follow by reviewing studies that directly
test the proposal, as well as the broader literature on goal-directed action, sampling-sensitive
and preference judgments, communication, pedagogy, and social and moral evaluation that can
be explained by our framework. We conclude with a discussion of how the naïve utility calculus
relates to accounts of first-person decision-making, and the proper relationship between
intuitive and scientific theories of intentional action.
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Naïve Utility Theory: Agents as Utility-Maximizers
Formally, we propose that the naïve utility calculus consist of a theory or a generative model
which, embedded in a Bayesian framework, supports predictions about future behaviors (setting
the costs and rewards and deriving the resulting actions) and inferences about the causes of
observed behaviors (finding, through Bayes’ rule, the costs and rewards that can generate the
observed actions). A formal description of the proposal is presented in Box 1.

The generative model specifies how costs and rewards determine the behavior of agents. When
agents decide how to act (e.g., whether to pursue a goal or which goal to pursue), they estimate
the expected utility of each goal. The utility of each goal is calculated by estimating the rewards
the agent would obtain if she completed the goal, and subtracting the cost she would need to
Box 1. The Naïve Utility Calculus as a Formal Computational Theory

For simplicity we assume that costs depend on actions and that rewards depend on states of the world (e.g., being in a
desirable physical location or having a specific object), and we focus on deterministic scenarios where agents have
perfect information. The formalization can be easily extended to handle more realistic situations.

Generative Model

Utility Estimation. If A is the set of actions that an agent can take (e.g., take a step forwards, pickup an object, etc.), and S
is the set of possible states of the world (determining, for instance, the agent's position in space or her possessions), then
a cost function is a mapping C : A ! R + from actions to costs, and a reward function is a mapping R : S ! R + from
states to rewards.

A plan (or policy) p : S ! A determines what the agent will do in each state to arrive at her goal, or final state, sf, from her
initial state s0. Given cost and reward functions C and R and a set P of plans, a utility function UC,R : P! R assigns a utility
to each plan p. In deterministic situations, this utility is the sum of the rewards the agent obtains minus the costs she
incurs:

UC;RðpÞ ¼
Xsf
si¼so

RðSiÞ�CðpðSiÞÞ [I]

where s0 is the starting state, sf is the target state, si are the intermediate states the agent travels through, and p(si) is the
planned action in each of these states.

Plan Selection. Because agents’ estimates are noisy, they sometimes fail to select the best possible plan. This is modeled
through a Boltzmann policy, where the probability of selecting a plan is proportional to:

pðpjC; RÞ / exp
UC;RðpÞ

k

� �
[II]

where k 2 (0, 1) determines the noise in the agent's choice. The smaller the value of k, the more likely the agent will select
high-utility plans.

Inference

Given an agent's actions, the unobservable cost and reward functions can be inferred using Bayes’ rule:

pðC; RjActionsÞ / pðActionsjC; RÞp C; Rð Þ: [III]

Here, p C; Rð Þ is the prior probability over cost and reward functions, capturing constraints and expectations, and
p(Actions|C, R) is the likelihood that the agent would take the observed actions given the cost and reward functions. This
likelihood term is computed by running the generative model to calculate the probability of the agent selecting each plan,
multiplied by the probability that each plan produces the observed actions and integrated over all possible plans the
agent can consider:

pðActionsjC; RÞ ¼
Z

p 2 P
pðActionsjpÞpðpjC; RÞ: [IV]

The Bayesian cost and reward inferences specified by Equation III are illustrated in Figure I, using an example stimulus
from an experiment designed to test the quantitative predictions of this model with adults (who saw a large number of
similar stimuli, parametrically varying the agent's path and the configuration of objects and terrain types in the
environment).
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Figure I. An agent navigates to a target (middle right square), with the option to stop along the way and pick up the
orange package, the white package, or neither. The model infers that blue terrain is less costly to cross than pink terrain
(otherwise the agent would have taken the shorter straight path), and that the orange package has strong negative value
(otherwise the agent would have taken the equally costly path that passes by it).
incur to complete it. Through this process, agents build a utility function that maps possible plans
onto expected utilities. Agents then pursue the plan with the highest positive utility. As such,
agents are only willing to pursue plans where the rewards outweigh the costs, and if a plan has
negative utility, the agent will be unwilling to act upon it, even in the absence of alternatives.

By assuming that agents behave in accordance with the generative model, observers can work
backwards to infer the set of costs and rewards most likely to have generated the observed
behavior. In line with previous work (e.g., [41]), we propose that these reverse inferences can be
understood as a type of Bayesian inference (Box 1).

The naïve utility calculus (an intuitive theory of agents as a generative model and a way to reverse
this model through Bayesian inference) makes some key predictions about how humans reason
about the behavior of others, some of which are shown in Figure 2. These predictions not only
involve people's qualitative judgments but also their confidence, supporting graded inferences
about the ambiguity of exact rewards and costs underlying the behaviors of others. For
simplicity, we only consider here the rewards associated with outcomes and the costs associ-
ated with sequences of actions; as we note below, however, an outcome can be costly and the
sequence of actions can also be rewarding.

Real-World Reasoning with a Naïve Utility Calculus
Reasoning about decision-making in the real world has several complications that the idealized
naïve utility calculus presented above cannot handle. These complications reveal more sophis-
ticated aspects of the naïve utility calculus that give it traction and point to ways in which
commonsense psychology may develop (Box 2).

First, agents do not always know their costs and rewards when deciding how to act. As such,
agents do not maximize true utilities, but expected utilities. In familiar scenarios, agents should
make accurate estimates. Most people, for instance, can estimate their costs for walking a block
and their rewards from eating a cookie. However, agents often pursue novel outcomes in novel
ways. In these contexts it is crucial for observers to understand that agents act based on the
expected rather than true costs and rewards (Figure 3). Observers should be less likely to infer
that agents’ choices are stable if the agent might have been ignorant or mistaken about the true
Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8 593
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Figure 2. Key Predictions of the Naïve Utility Calculus. Utility maximization in scenarios where costs depend on
actions and rewards depend on outcomes. (A) Qualitative plot of how the decision to act reflects the total utility. The utility is
positive when the rewards outweigh the costs and negative otherwise (green indicates that the agent will act and red that
she will not.) (B) If an agent pursues a low-cost plan, a wide range of rewards could have produced a positive utility, thus low-
cost actions do not reveal much about the agent's reward. However, if the agent pursues a high-cost plan, we can be more
confident that the reward is high. (C) The structure of these inferences flips when the agent refuses to pursue a plan. For low-
cost plans, the rewards must be low to make the net utility negative, thus we can be confident that a decision to forego
acting indicates a small reward. By contrast, a wide range of rewards is consistent with refusing to pursue a costly plan, such
that if the agent refuses to pursue a high cost plan, her refusal is not very informative about her rewards. (D) The implications
are parallel when we infer costs given reward knowledge. Low rewards only motivate action when the costs are low, while
high rewards motivate action under a wide range of costs; thus the pursuit of a goal when rewards are low is more
informative about an agent's costs (that they are probably low). (E) If an agent foregoes a low reward we may be uncertain
about the costs of acting, but if she foregoes a high reward we can be more certain that the costs are high.
costs or rewards of her actions, as will often happen for agents who are inexperienced with the
rewards they are choosing (Figure 1G,H).

Moreover, agents must estimate their own expected utilities, and these estimates may be
inexact (Box 1). Intuitively, when two plans have very different expected utilities, it is easy to
identify the better plan. However, when plans have similar expected utilities, agents may find it
more difficult to decide which is best – even apart from any uncertainty in their basic costs and
rewards. This assumption provides flexibility in the inferences made by observers, softening the
assumption that choices unambiguously reveal the highest expected utility. It also allows
observers to infer agents’ costs and rewards from the dynamics of their decision-making:
agents are more likely to deterministically choose one plan over another when their utilities are
very different, and more likely to oscillate between their choices when the utilities are similar.

Second, costs and rewards are not objective properties of the physical world, but subjective
experiences that vary between agents. Some people find walking more difficult than others, and
some people like cookies more than others. However, costs and rewards also have an agent-
invariant structure. Two cookies are better than one, and longer distances are more costly to
travel than short ones. These individual differences may be observable or may need to be
inferred as part of explaining an agent's actions, as in classic attribution theories [52]. By
integrating both agent-invariant (objective) and agent-dependent (subjective) aspects of costs
and rewards, the naïve utility calculus allows learners to parcel out known agent-invariant
contributions to how an agent acts in a given situation, and thereby infer latent costs and
rewards that differ between agents.
594 Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8



Box 2. Development of the Naïve Utility Calculus

The studies reviewed here show successes of children in different age groups in different scenarios. Together, these
open the possibility that some form of the naïve utility calculus is at work from birth. Nevertheless, many aspects of the
naïve utility calculus may develop in crucial ways. We describe here four aspects of the naïve utility calculus that may
develop over time.

The Dimensions of Costs and Rewards

As adults we assume that agents’ utilities integrate many sources of costs and rewards. Time, effort, attention, and even
intangible entities such as damaging one's reputation, can be costly. Similarly, eating, learning, or having a good
reputation, for example, can be rewarding. The dimensions that infants consider in utility computation are likely limited
and expand over time. For instance, it is not clear how one could assign a cost to breaking social norms without knowing
what these social norms are.

Properties of Cost and Reward Functions

As different sources of costs and rewards increase or diminish, so do the costs and rewards. This relation, however, is not
linear. For example, the cost associated with exhaustion from walking increases as a function of the distance, but the first
steps are less costly than the last ones. Similarly, eating is usually highly rewarding, but eating too little or too much is not.
Even if children understand that particular actions or outcomes are costly or rewarding, learning the shape of the cost and
reward functions may develop.

Development of the Representation of Costs and Rewards

As adults, we understand that agents act based on their expected costs and rewards. As such, they select the goal with
the highest expected utility. By contrast, infants may assume that agents know and act upon exact costs and rewards,
and over time learn that this is not the case.

Agent-Independent Priors on Costs and Rewards

Although individual differences in agents’ subjective costs and rewards can only be learned from individuals themselves,
agents largely overlap on what they like and dislike. For instance, most people agree that eating sweets is rewarding and
that spending time is costly. These priors help observers to zoom in on the appropriate cost and reward decompositions.
Are these priors learned by finding similarities in costs and rewards across agents? Or do we initially assume all agents
have the same costs and rewards, and later infer individual variations across agents?

Experience
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Figure 3. Relation Between Experience and Reward Estimation. Schematic of utility maximization as a function of
experience. Ignorant agents (leftmost side of x axis) have high uncertainty about potential rewards (represented as ovals on
the y axis), and thus are more likely to misidentify the highest-utility option, and more likely to revise their choices over time.
Even one encounter with a novel object may cause a large change in the agent's estimate of their expected reward.
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Third, the content of costs and rewards goes far beyond physical actions and outcomes. In
social situations, an agent's costs and rewards can depend recursively on their expectations
about another agent's costs and rewards. If someone is motivated to help, her rewards depend
not only on her own utilities but also on promoting the other person's utilities, or diminishing them
if she is motivated to hinder [53]. Likewise, acting against what you know another agent wants
you to do may impose a cost. By integrating an agent's own first-order (self-interested) costs
and rewards with that agent's second-order appreciation of others’ costs and rewards, the
naïve utility calculus allows observers to make inferences about the nature and extent of others’
prosocial or altruistic tendencies.

Finally, behaviors can have more than one cost–reward decomposition. When agents act
they may incur costs for the actions and obtain rewards for the outcome; they may obtain
rewards for the actions and incur costs for the outcome; or they may obtain rewards for
both the actions and the outcome. The naïve utility calculus in its most general form supports
all of these representations. However, this flexibility implies that behaviors have multistable
cost–reward decompositions. As in other domain of cognitions (e.g., [54]), and consistent
with the Bayesian framework [55], this challenge can be solved through an appropriate
inductive bias or prior. We assume that, as a default, people most naturally parse behaviors
such as those shown in Figure 1 in terms of costly actions and rewarding outcomes. Other
decompositions of costs and rewards can be invoked when these favored explanations
are unable to account for the behavior (e.g., ascribing rewards to actions in themselves
[56]).

Evidence for the Naïve Utility Calculus
Our empirical work provides several lines of evidence that the naïve utility calculus supports early
social reasoning. In one series of experiments [57] we found that when 5-year-olds learn an
agent's costs and choices, they infer a reward function that guarantees that the agent maxi-
mized her utilities. We showed children a puppet who chooses crackers over cookies when both
items are equidistant, but cookies over crackers when the cookies are closer (Figure 4A). If
children equate choice with preference, they should think the puppet likes crackers and cookies
equally; instead, our results show that children integrate the puppet's choices with cost
information and recognize that the puppet prefers crackers (i.e., the item chosen when the
costs were matched; Figure 4C). Similarly, when children observe agents’ choices whose
rewards are known, they infer a cost function that guarantees utility maximization. We showed
children one puppet who liked crackers more than cookies, and another puppet who liked them
both equally. We then put the cookies on a low box and the crackers on a high box. Both
puppets chose the cookies (Figure 4B). When asked which puppet couldn’t climb, children
chose the puppet with the strong preference even though neither puppet even attempted to
climb (Figure 4C). Further experiments also showed that children understand how different
agents can incur different costs (i.e., costs vary across agents) even when taking identical
actions.

The naïve utility calculus implies that agents who are ignorant about the costs and rewards of
actions should be more likely to make poor choices and change their minds (and conversely, that
agents who make poor choices and change their minds are likely ignorant about costs and
rewards). We introduced 4-year-olds to two puppets, both of whom reached for and chose a
rambutan over an African cucumber (Figure 1H and Figure 3). One puppet then said ‘yuck’ (or in
a separate experiment, changed her mind). Children were asked which puppet knew all about
these fruits before and which had never seen them before. Children successfully identified the
naïve agent (and, conversely, if they knew which agent was knowledgeable and which naïve,
they could guess who said ‘yuck’). Children were able to draw similar inferences with respect to
inferences about agents’ costs (Figure 1G) [58].
596 Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8
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Figure 4. Empirical Support for the Naïve Utility Calculus. Experiments evaluating the naïve utility calculus. (A) Experiment 1 in [57]. Children infer which treat Ernie
prefers after watching him pick each one once. (B) Experiment 2 in [57]. Children infer which puppet cannot climb when two agents with different preferences make the
same low-cost choice. (C) Results from experiment 1 (test condition and a control condition) and experiment 2 (condition where Cookie Monster cannot climb, shown
in panel B, and a parallel version where Grover cannot climb). (D) Experiments in [59]. (E) Results from the experiments. The control condition in experiment 3 (not shown in
panel D) consisted of a baseline measurement of children's judgment of which of the two puppets is nicer.
In another set of experiments [59] we showed that the naïve utility calculus supports toddlers’
social evaluations. We showed 2-year-old children two puppets making a toy play music; one
puppet was able to make the toy play music at the first try (low cost) while the other took several
attempts (high cost). At baseline, toddlers preferred to play with the more competent agent and
judged him to be nicer. When both puppets refused to help the parent activate the toy, toddlers
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continued to prefer the more competent agent but now judged that the less-competent agent
was nicer (Figure 4D,E). Consistent with the naïve utility calculus, these results suggest that 2-
year-olds can infer an agent's motivation to help (her subjective rewards) given information about
her costs and, like adults, are more likely to exonerate agents for whom helping is costly than
those who are simply unmotivated to be helpful.

The Naïve Utility Calculus as a Unifying Framework for Social Cognition
Beyond these studies that directly test the predictions in Figure 1, the naïve utility calculus has
implications for a wide array of other phenomena in social-cognitive development. As noted,
researchers have looked extensively at children's intuitions about agents’ goal-directed actions,
desires and beliefs, pro-social behavior, and teaching and learning from others. Each of these
aspects of social cognition has typically been treated as a separate problem, and explored
through different paradigms. However, findings in many of these areas can be unified under the
assumption that humans predict and explain behavior through a naïve utility calculus, as we
illustrate below.

Goal-Directed Action
A large body of work in cognitive development suggests that even infants expect agents to
complete their goals as efficiently as possible [2,3,60–65]. If, for instance, infants are habituated
to one agent hopping over a barrier to reach another agent, infants look longer when the agent
continues to hop in the absence of a barrier than when she moves in a straight line [2,65].

Theses inferences have been explained by the hypothesis that infants adopt a ‘teleological
stance’ [3] – a non-mentalistic representation of behavior where agents are assumed to move
efficiently toward goal-states, subject to situational constraints. The teleological stance is
thought to underlie infants’ earliest forms of reasoning about agents and to serve as the basis
for mentalistic representations that emerge later in life. The teleological stance is compatible with
the naïve utility calculus: if agents maximize utilities, they should incur the minimum costs
necessary to obtain rewards. However, the naïve utility calculus expands on the teleological
stance by explaining how agents select their goals, and by explaining how objective (e.g., walls)
and subjective (e.g., competence) constraints not only influence goal completion, but also goal
formation. Related ideas have been explored [45,66], although not with the same focus on cost–
reward tradeoffs in childhood as we emphasize here.

Is it possible that infants merely expect agents to take the shortest possible path to a goal,
without an abstract representation of costs or an expectation that agents should minimize them?
Several studies suggest that infants represent efficiency in terms of relative costs that go beyond
simply computing the length of the path. Southgate et al. [64] showed that infants appear to
expect actions with fewer steps to be performed over actions that take more steps or more time.
Gergely et al. [67] showed infants an actor who used their head to light up a toy when their hands
were either free or occupied. Infants themselves were more likely to imitate the head action in the
hands-free condition compared to the hands-occupied condition, suggesting they inferred that
the actor had a specific intention (indicating a source of strong reward) to use their heads only
when that was clearly the more costly of available alternative actions. Together, these findings
suggest that infants’ expectation for efficient action may be driven by an abstract notion of cost-
minimization. Nevertheless, experiments that directly pit a path's simplicity, straightness, length,
time and energy costs against each other will be necessary to reveal if a general metric of cost
minimization is at work an infancy, or if it arises later, building on top of some more limited and
primitive notion of action efficiency.

More generally, several studies suggest that infants believe that the ability to perform effortful,
high-cost actions in the service of salient or plausible goals is the special provenance of agents
598 Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8



(and only agents). Abilities attributed to agents (but not to objects or physical forces) include the
ability to engage in self-generated movement [4,68,69], the ability to resist gravity [70], the ability
to cause objects to move or change state [71,72], the ability to create order [73], the ability to
generate patterns [74], and the ability to spontaneously and non-deterministically cause
changes in the world [75,76].

Such studies provide evidence that infants have intuitions about the costs of agents’
actions. Other work suggests that infants also understand the rewards of goal-directed
actions. Ten-month-olds appear to be surprised when an agent expresses a negative
emotion following a completed (versus failed) goal [77], suggesting that they expect
agents to find goal-completion rewarding. Ten-month-olds also attribute a preference to
an agent who consistently chooses one goal over another [11], suggesting that infants
understand that agents can find some goals more rewarding than others. By 18 months,
children also understand that different agents can find the same goal more or less rewarding
[10].

Collectively these results suggest that at least many key prerequisites to a naïve utility calculus
emerge early in development: an expectation that agents act efficiently in the sense of acting to
maximize rewards relative to costs, an expectation that agents (and only agents) can perform
effortful actions in the service of goals, and an expectation that agents experience subjective
rewards consistent with goal outcomes.

Sampling and Preferences
Infants as young as 6 months of age expect randomly sampled sets, but not deliberately
selected sets, to be representative of the population from which they are drawn [78–82]. This
sensitivity to the sampling process supports learning properties of novel objects [83] and the
scope of the meaning of novel words [84,85]. For instance, Gweon et al. [83] showed 15-month-
old infants a box full of blue and yellow toys and an agent taking out three blue toys to
demonstrate that they all share some hidden property (e.g., they squeak). Infants appeared
to expect all toys to share the hidden property when the blue balls were common (suggesting
that the agent sampled three blue balls by chance), but not when they were rare (suggesting that
the agent sampled three blue balls selectively). In the absence of a clear purpose behind an
agent's sampling actions, infants attribute preferences [9,11]. For instance, if an agent pulls three
frogs in a row from a box that contains mostly ducks, 20-month-olds infer that the agent prefers
frogs to ducks; they do not infer this if the box contains more frogs than ducks or if the box
contains only frogs.

The intuitions underlying the sensitivity of toddlers and infants to the sampling process can be
explained through the naïve utility calculus. This is easy to see if we imagine unpacking a
population of objects into a generic spatial configuration where objects are randomly distributed
in space, with some closer and others further from an agent, and hence less costly or more
costly for the agent to reach (Figure 5). When a preferred object type is rarer, the closest
instances of that type will tend to be further from the agent and hence more costly to reach. If all
the objects in a box are equally rewarding, then agents should minimize costs by taking the
objects that are the easiest to reach, generating a sample representative of the population.
However, if one type of object is more rewarding than the others, then the agent should
selectively draw that kind of object even if it is more costly to obtain, generating a biased
sample. Reversing these inferences, if an agent generates a sample that could have been
obtained simply by minimizing costs, her actions provide no reason to think that some objects
are more rewarding than others. However, if generating the sample required the agent to
perform costly actions (in time, effort, and attention), the rare objects must have been more
rewarding.
Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8 599



× 1

× 9

(A) (B)

× 5

× 5

× 9

× 1

Figure 5. Costs in Statistical and Spatial Contexts. Graded inferences about preferences in sampling scenarios (A)
along with equivalent scenarios unfolded spatially (B), showing how the assumption of utility maximization supports both
types of inferences.
Communication and Pedagogy
The naïve utility calculus also provides a principled explanation for how the assumptions
underlying pedagogical communication emerge. If a teacher shares information, the reward
from sharing must exceed the cost for teaching. As such, in small and simple domains (e.g., a toy
with just a few functions) where the cost of sharing information is negligible, agents should share
all the information necessary for the learner to draw accurate inferences, and learners can use
this expectation to make inferences accordingly. Consistent with this expectation, children
assume that teachers share all relevant information in simple domains [86], and when a teacher
demonstrates only one of many functions of a toy, children rate the teacher poorly and mistrust
his subsequent teaching [87]. These inferences should be cost-sensitive; however, learners’
expectation that informants will communicate all relevant information should be weaker when the
costs are higher. Consistent with this, children prefer exhaustive informants when costs are low,
but prefer informants who provide only information sufficient for a good inductive inference when
costs are high [88]. In more complex domains, more complex inferences are warranted. The
naïve utility calculus makes the untested predictions that observers should be less surprised
if teachers fail to provide exhaustive evidence about a toy with many functions than a toy with
only a few. Similarly, if a toy has many equally rewarding functions, but some are costlier to
demonstrate than others, observers should be less surprised if the teacher fails to share high-
cost information versus low-cost information. As noted earlier, the costs and rewards of
pedagogy crucially can have recursive components: in addition to the teacher's intrinsic reward
for teaching, her utilities for sharing some information may depend on how rewarding it is for the
learner to learn it, and how costly the learner's different learning options are. Consistent with this,
several studies suggest that very young children go out of their way to communicate information
that is currently unknown to the learner [89,90], relevant to the learner's goal [91], or difficult
for the learner to discover by herself [92,93].

Finally, in linguistic communication more broadly, the classic Gricean maxims – that speakers
communicate things that are relevant to the conversation (maxim of relation), and they provide all
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Outstanding Questions
Is some form of the naïve utility calculus
part of ‘core knowledge’? That is, do we
have concepts of costs and rewards,
and an expectation that agents act to
maximize utilities, from birth? Or is this
understanding built upon simpler, ear-
lier-developing theories of agency? If
the naïve utility calculus is core knowl-
edge, what develops (Box 2)? If not,
what types of experiences drive the
construction of the naïve utility calculus
and what role does maturation play, if
any?

What role does first-person experience
play in the development of the naïve
utility calculus (Box 2), if any? Given that
the experiences of infants influence how
they perceive goal-directed actions, do
they also play a role in how they reason
about costs and rewards?

What is the connection between the
naïve utility calculus and how we actu-
ally make decisions? Is the naïve utility
calculus an approximation or simplifi-
cation of how we act? Or does it oper-
ate under fundamentally different
principles? If humans do not generate
behavior by computing and maximizing
utilities, what does the naïve utility cal-
culus capture about behavior that
yields accurate predictions?

What are the neural mechanisms that
support the naïve utility calculus? Are
the brain regions implicated in represent-
ing values and costs in decision-making
also involved in reasoning about others’
costs and rewards? Are they comple-
mented by other neural circuitries that
support reasoning about others’ beliefs
or self–other comparisons?
the information needed (maxim of quantity) in a manner that is truthful (maxim of quality) and clear
(maxim of manner) [94] – are central in pragmatic inferences for both adults and children [95,96],
and can be derived from the naïve utility calculus. Minimizing utterance length (communication
costs) while maximizing information transfer to the listener (communicative rewards) can be seen
as optimizing an overall utility function trading off these costs and rewards.

Social and Moral Reasoning
Many studies have suggested that social evaluation emerges in the 1st year of life, with infants
preferring agents who help others to achieve their goals over those who hinder those goals
[19,23]. Moreover, the evaluations of infants are transitive (they prefer agents who hinder
hinderers and help helpers [97,98]), and they only positively evaluate agents if they helped
intentionally [21] and did so with knowledge of the recipients’ preferences [22]. Such studies are
consistent with a naïve utility calculus: in every case, the helper or hinderer takes costly actions (i.
e., goes out of his/her way to intervene), supporting the inference that the goal (helping or
hindering the other) must be rewarding. Moreover, these studies suggest that infants may
already understand that the utilities of agents can go beyond including their individual costs and
rewards, and also integrate the costs and rewards of others. As noted, our own work suggests
that toddlers also use agents’ relative costs to distinguish their motivations: if someone refuses
to help when helping is costly, 2-year-olds think she is nicer than a more competent agent who
refuses to help at low cost [59].

The naïve utility calculus has many other, untested, implications for social evaluation. Consider,
for instance, that agents who underestimate rewards or costs may be more liable to abandon
plans or commitments, with consequences for how others judge them and whether they trust
them in the future. It is also noteworthy that there is a special category of moral blame
(‘exploitation’) for those who knowingly take advantage of others’ ignorance of their utilities;
it is unethical to convince someone to commit to an action when one knows that their expected
reward is too high and/or their expected costs are too low. By the same token, agents with
selective knowledge of their utilities can incur special moral credit or blame: it is particularly
admirable to commit to a helpful action when you are ignorant of any extrinsic reward; it is
particularly heinous to knowingly perform a costly (e.g., planned and premeditated) harmful
action. In short, a wide range of intuitions underlying our judgments of others’ competence and
values involve considering how agents’ might maximize their utilities given subjective and
objective elements of costs and reward. In this way, a naïve utility calculus may play a crucial
role in social evaluation broadly.

Concluding Remarks
The connection between the naïve utility calculus as an account of intuitive decision-making and
formal theories of decision-making developed in economics may appear coincidental or simply
convenient, but we believe the relation runs deep. As Fritz Heider argued [38], scientific theories,
especially in their early stages, may be grounded on commonsense; what better way to
formulate initial hypotheses if not by what we intuitively believe to be true? Heider quotes
the physicist Robert Oppenheimer: ‘. . .all sciences arise as refinement, corrections, and adap-
tations of common sense.’

Suppose that scientific theories of human decision-making, starting with classical utility theory
and moving through their descendants in behavioral economics, really began by being grounded
on the commonsense theory we discussed here. This view has several implications. First, the
reason that our models of commonsense psychology in children resemble classical utility theory
might be because early economists were, with a different purpose in mind, doing exactly what
we do here: formalizing commonsense psychology. Second, our commonsense psychology is,
at its core, ‘right’. Despite the memorable cases where we fail to understand each other, more
Trends in Cognitive Sciences, August 2016, Vol. 20, No. 8 601



often than not we accurately evaluate the behavior of others. Even if it fails to account for human
decision-making in less ecologically relevant domains (e.g., economic choices in the modern
marketplace), the naïve utility calculus, as with the first models in classical utility theory, captures
key features of human intentional action in the most basic everyday situations even the youngest
children appreciate. In addition, as Heider observed, even when commonsense psychology is
wrong with respect with how we make choices, it is still right in an important sense. Our most
important everyday choices involve others, and our ability to reason about their own choices
influences what we do. This intuitive decision-theory is therefore, by definition, a cornerstone of
any scientific theory of human decision-making.

Finally, the ways in which people's decision-making fails to conform to basic assumptions of
classical utility theory, which are often counter-intuitive and surprising, are surprising precisely
because they go against our commonsense. As such, these surprises may point to features of
the naïve theory that we have not yet elucidated. To cite only one salient example, we may
overinterpret the failures of others to help in a low-cost situation as a sign that they do not value
helping us. However, perhaps our naïve theories do not sufficiently take into account non-
optimal planning by agents; they wanted to help but they did not plan well. Alternatively, perhaps
our naïve theories oversimplify by assuming we know all the relevant costs (or rewards) even
when we do not, or by assuming that the costs of ours are similar to our own even when they are
not; both these assumptions could lead us to mistake a failure to help as a low-cost refusal even
when it is not. Understanding how our commonsense psychology is oversimplified in these ways
could advance not only our understanding of core social cognition as scientists but also,
ultimately, help us to better understand each other as human beings.
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